引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 0次   下载 1 本文二维码信息
码上扫一扫!
分享到: 微信 更多
坡位梯级变化对杉木无性系生长的影响
吕宇宙1, 练伟春1, 谭志嘉1, 许汉坤1, 王润辉2, 黄荣2, 郑会全2
1.韶关市曲江区国有小坑林场;2.广东省林业科学研究院
摘要:
为探究杉木 Cunninghamia lanceolata 无性系树高、 胸径和单株材积等生长性状随坡位高度米级 别微变化的变异规律, 以杉木 8 a 生无性系试验林为研究对象, 测定不同坡位梯级杉木无性系的树高、 胸 径和单株材积, 分析坡位米级别微小变化对杉木无性系生长的影响。 方差分析结果显示, 不同坡位梯级间 杉木无性系 T-c07 和 T-c22 平均树高、 胸径和单株材积等生长性状呈极显著差异 (P<0. 01), 说明坡位 对杉木无性系的生长产生了显著影响。 进一步开展多重比较分析发现, 位于中下坡位梯级的杉木无性系 T -c07 和 T-c22 的树高、 胸径和单株材积显著高于中上坡位。 相关性分析结果显示, 杉木无性系 T-c07 和 T-c22 的树高、 胸径和单株材积与坡位高度呈现极显著负相关关系, Pearson 相关系数分别为-0. 917 (P< 0. 01) 和-0. 886 (P<0. 01)、 -0. 961 (P<0. 01) 和-0. 945 (P<0. 01)、 - 0. 939 (P< 0. 01) 和- 0. 949 (P<0. 01), 表明杉木无性系的树高、 胸径和材积生长表现出随着坡位高度的升高而受抑制。 研究揭示了 米级别的微小坡位高度变化足以影响杉木无性系的生长, 建议在开展杉木培育工作中, 可根据杉木生长性 状随坡位变化规律对坡面较长的立地分段设定不同培育目标和经营管理方式。
关键词:  坡位  生长性状  杉木  无性系  相关性分析
DOI:
分类号:
基金项目:广东省林业科技创新项目 (2024KJCX017), 广东省重点领域研发计划 (2020B020215001)。
Effects of the Step-change of Slope Position on the Growth of Cunninghamia lanceolata Clones
Lü Yuzhou1, Lian Weichun1, Tan Zhijia1, Xu Hankun1, Wang Runhui2, Huang Rong2, Zheng Huiquan2
1.Xiaokeng State Forest Farm in Qujiang District of Shaoguan;2.Guangdong Academy of Forestry
Abstract:
To reveal the effect of slight slope position changes on the growth of Cunninghamia lanceolata clones, an 8-year-old experimental stand of C. lanceolata clones was selected as the research object, and then, tree height (H), diameter at breast height (DBH) and stem volume (V) of C. lanceolata clone T-c07 and Tc22 at different step-changes of slope positions were measured and analyzed. Results of ANOVA showed that there were significant differences (P<0. 01) in H, DBH, and V of clone T-c07 and T-c22 among different step-changes of slope positions, indicating that step-change of slope position has a significant impact on the growth of C. lanceolata. Furthermore, multiple comparison analyses showed that H, DBH, and V of clone Tc07 and T-c22 located on medium to lower slope were significantly higher than those on medium to upper slope. Moreover, correlation analysis revealed that H, DBH, and V of clones T-c07 and T-c22 showed a highly significant negative correlation with slope height. The Pearson correlation coefficients were -0. 917 (P< 0. 01) and -0. 886 (P<0. 01) for H, -0. 961 (P<0. 01) and -0. 945 (P<0. 01) for DBH, and -0. 939 (P< 0. 01) and -0. 949 (P<0. 01) for V, respectively. In conclusion, our results indicate that slight slope position changes have a significant impact on the growth of C. lanceolata. Here, we suggest that different cultivation objectives and management methods can be set for slopes with longer lengths according to the growth characteristics of C. lanceolata that change with slope position in the process of cultivating and producing C. lanceolata.
Key words:  slope position  growth traits  Cunninghamia lanceolata  clone  correlation analysis