引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 185次   下载 256 本文二维码信息
码上扫一扫!
分享到: 微信 更多
南岭国家级自然保护区地上粗木质残体 质量估算模型构建∗
段懿芳1, 李超荣1, 李兆佳2, 林 芳3, 林玉华3, 曾滢静1, 李广玮3, 李华盛4
1.广东南岭国家级自然保护区管理局;2.中国林业科学研究院热带林业研究所;3.广东省乳阳林场 (广东南岭国家森林公园管理处);4.广东省天井山林场 (广东天井山国家森林公园管理处)
摘要:
为了更好地支撑广东南岭国家级自然保护区以及附近森林生态系统碳储量和碳汇估算, 研究 采用广东南岭国家级自然保护区海拔 400 ~ 1 800 m 之间阔叶林和针阔混交林中采集的 300 个粗木质残体 (Coarse wood debris, CWD) 样品, 以分解等级和体积参数为自变量构建 CWD 质量估算模型。 CWD 样 品平均直径 3. 332~ 5. 919 cm, 平均长度 1. 55 ~ 2. 80 m, 平均密度 0. 150 ~ 0. 224 g·cm -3 。 尽管直径、 长 度和密度在个体和样地之间的差异较大, 但总体上不随海拔和森林类型而变化, 代表性较好。 CWD 分解 等级对样品特征有显著影响, 样品密度随分解等级增加而下降。 建立的模型拟合度高, 分解等级和体积 参数均能有效解释 CWD 质量变化。
关键词:  粗木质残体  质量估算  亚热带常绿阔叶林
DOI:
分类号:
基金项目:广东南岭国家级自然保护区森林植被碳汇相关模型构建 (ZL18CS003)。
Construction of A Model for Mass Estimation of Above-Ground Coarse Woody Residues in Nanling National Reserve
Duan Yifang1, LI Chaorong1, LI Zhaojia2, LIN Fang3, LIN Yuhua3, ZENG Yingjing1, LI Guangwei3, LI Huasheng4
1.Administration of Guangdong Nanling National Nature Reserve;2.Research Institute of Tropical Forestry, Chinese Academy of Forestry;3.Guangdong Ruyang Forest Farm ( the Nanling Mountain National Forest Park Management Office);4..Guangdong Tianjingshan Forest Farm (Guangdong Tianjingshan National Forest Park Management Office)
Abstract:
In order to better support the estimation of carbon storage and carbon sink in Guangdong Nanli National Natu ng re Reserve and nearby forest ecosystems, the study used 300 coarse wood debris (CWD) samples collected from broad-leaved and mixed coniferous and broad-leaved forests in Guangdong Nanling National Nature Reserve between the altitudes of 400 and 1 800 m, and constructed a model for estimating the quality of the CWDs using decomposition level and volume parameters as independent variables. The average diameter of CWD samples ranged from 3. 332 to 5. 919 cm, average length from 1. 55 to 2. 80 m, and average density from 0. 150 to 0. 224 g·cm -3 . Although the diameter, length, and density varied widely among individuals and sample plots, they generally did not change with elevation and forest type, and the representativeness was good. The CWD decomposition level had a significant effect on the sample characteristics, and the sample density decreases with the increase of the decomposition level. The established model has a high degree of fitting, and the decomposition level and volume parameters can effectively explain the quality change of CWD.
Key words:  CWD  mass estimation  subtropical evergreen broadleaf forest