引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 70次   下载 67 本文二维码信息
码上扫一扫!
分享到: 微信 更多
移栽后高度生长恢复年限和优势决定的造林潜力差异分析 ———以托木尔峰青海云杉与雪岭云杉混交造林试验为例
周浩1, 蔣少伟2, 黄铭3
1.新疆托木尔峰国家级自然保护区管理局;2.新疆农业大学;3.深圳市万霖园林建设有限公司
摘要:
为了探究混交造林树种选择和抚育管理, 以 5 a 生的本地雪岭云杉 Picea schrenkiana 与引种的 青海云杉 P. crassifolia 移栽苗为研究对象, 开展混交造林试验比较移栽后主干高度生长表现的种间差异。 研究结果显示, (1) 青海云杉在移栽后第 3 年高度生长潜力开始恢复。 青海云杉移栽第 3 年的主干生长 量 (21. 7±1. 6 cm) 显著高于移栽第 1 年 (11. 7±1. 2 cm) 和移栽第 2 年 (9. 5±1. 6 cm) 的主干生长量 (P<0. 05), 但是雪岭云杉移栽后各年间主干高度生长量无显著差异 (P>0. 05); (2) 移栽后第 3 年, 与 雪岭云杉相比, 青海云杉的主干高度生长能力优势明显, 青海云杉的主干高度生长 (21. 7±1. 6 cm) 显著 高于雪岭云杉 (>2 倍, 9. 8±1. 6 cm, P<0. 001)。 研究结果表明, 在造林株行距为 2 m×2 m 时, 青海云 杉移栽苗在第 3 年恢复生长, 并且表现显著的高度生长优势。 原因可能与青海云杉采取快速高度生长策略 而非树干粗生长策略有关, 从而在演替早期占据生存空间, 雪岭云杉则相反。 试验结果支持了引种的青 海云杉 (贺兰山区) 是南部天山山区造林的适宜树种。 试验结果表明混交造林必须考虑树种的移栽后生 长恢复年限和种间高度生长优势差异。 未来在混交造林过程中, 有必要采取修剪雪岭云杉侧枝, 提高其 高度生长潜力, 进而促进混交造林的多样性稳定发展。
关键词:  托木尔峰国家自然保护区  青海云杉  雪岭云杉  高度生长  混交造林试验
DOI:10. 20221 / j. cnki. 2096-2053. 202504003
分类号:
基金项目:
Analysis of Differences in Afforestation Potential Determined by Post-Transplant Recovery Period and Advantages in Height Growth ———A Case Study of Mixed Afforestation Experiment with Picea crassifolia and P. schrenkiana in Tomur Peak
zhouhao1, jiangshaowei2, huangming3
1.Xinjiang Tuomuer Peak National Nature Reserve Administration;2.Xinjiang Agricultural University;3.Shenzhen Wanlin Landscape Construction Co., Ltd., Shenzhen
Abstract:
To investigate tree species selection and tending management for mixed afforestation, 5-yearold local Picea schrenkiana seedlings and introduced P. crassifolia transplanted seedlings were taken as research objects. A mixed afforestation experiment was conducted to compare interspecific differences in the height growth performance of the main stems after transplantation. The results showed that: (1) P. crassifolia regained its height growth potential in the 3rd year after transplantation. The annual height growth increment of the main stem for P. crassifolia in the 3rd year after transplantation (21. 7±1. 6 cm) was significantly higher than that in the 1st year (11. 7±1. 2 cm) and the 2nd year (9. 5±1. 6 cm) after transplantation (P<0. 05). In contrast, no significant difference in main stem height growth increment was observed among years for P. schrenkiana after transplantation (P > 0. 05 ); ( 2 ) In the 3rd year after transplantation, compared with P. schrenkiana, P. crassifolia had an obvious advantage in the main stem height growth capacity. The main stem height growth increment of P. crassifolia was significantly higher than that of P. schrenkiana (more than 2 times, 9. 8±1. 6 cm, P<0. 001). The results indicate that with an afforestation spacing of 2 m×2 m, P. crassifolia seedlings resumed growth in the 3rd year and exhibited a significant height growth advantage. The reason may be related to P. crassifolia, adopting a strategy of rapid height growth rather than stem diameter growth, thus occupying living space in the early stage of succession, while P. schrenkiana is the opposite. The experimental results support that the introduced P. crassifolia (Helan Mountains Area) is a suitable tree species for afforestation in the southern Tianshan Mountains Area. The experimental results also indicate that mixed afforestation must consider the growth recovery period after transplantation of tree species and interspecific differences in height growth advantage. In the future, during the mixed afforestation process, it is necessary to prune the lateral branches of P. schrenkiana to improve its height growth potential, thereby promoting the stable development of biodiversity in mixed afforestation.
Key words:  Tomur Peak National Nature Reserve  Picea crassifolia  Picea schrenkiana  height growth  mixed afforestation experiment