引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 942次   下载 1690 本文二维码信息
码上扫一扫!
分享到: 微信 更多
无人机遥感技术在林业中的应用
杨安蓉1, 李富荣1, 赵 满1, 冯岩晃1, 杨江敏1, 董诗凡1, 李木东1, 张 超2
1.德宏州林业科学研究所;2.西南林业大学
摘要:
在森林资源可持续管理和生态保护要求不断提升背景下, 林业调查和监测手段逐步向高效、 精 准、 数字化方向发展。 传统林业调查人力成本高、 覆盖范围有限, 难以满足精准林业的需求。 无人机遥感技 术凭借高时空分辨率、 操作灵活及高性价比等优势, 在林业信息获取中展现出巨大潜力, 成为推动精准林业 的重要工具。 然而, 目前相关研究多集中于树种识别、 森林结构参数估测等单一应用领域, 缺乏系统梳理其 在林业全流程中的综合应用。 该研究系统总结了无人机遥感技术在林业中的应用现状, 明确其在林业信息提 取中的关键技术与方法, 分析其在林分类型及树种识别、 森林结构参数提取、 森林干扰监测等方面的实际应 用成果, 进一步探讨当前应用中存在的问题与挑战, 并对其未来发展方向进行展望。
关键词:  树种识别  森林结构参数  森林干扰监测  无人机遥感  无人机载荷
DOI:
分类号:
基金项目:德宏林草资源一体化智慧系统研究
Application of UAV Remote Sensing Technology in Forestry
Yang Anrong1, Li Furong1, Zhao Man1, Feng Yanhuang1, Yang Jiangmin1, Dong Shifan1, Li Mudong1, Zhang Chao2
1.Dehong Research Institute of Forestry;2.Southwest Forestry University
Abstract:
Against the backdrop of increasingly stringent requirements for sustainable forest resource management and ecological conservation, forestry survey and monitoring methods are progressively advancing toward efficiency, precision, and digitalization. Traditional forestry surveys entail high labor costs and limited coverage, making it difficult to meet the demands of precision forestry. UAV remote sensing technology, with its advantages of high spatiotemporal resolution, operational flexibility, and cost-effectiveness, has demonstrated significant potential in forestry information acquisition and has emerged as a crucial tool for advancing precision forestry. However, current research predominantly focuses on isolated application areas such as tree species identification and forest structural parameter estimation, lacking a systematic review of its comprehensive appli-cations across the entire forestry workflow. This study systematically summarizes the current applications of UAV remote sensing technology in forestry, identifies key technologies and methods for forestry information ex-traction, analyzes its practical achievements in areas such as stand type and tree species identification, forest structural parameter extraction, and forest disturbance monitoring, and further explores existing challenges and issues in current applications, and provides an outlook on future development directions.
Key words: