引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 37次   下载 35 本文二维码信息
码上扫一扫!
分享到: 微信 更多
广东紫金白溪自然保护区森林表层土壤碳水储量及空间分布特征
李玉峰,张 蒙,梅启明,任雲雲,李 雪,刘效东
1.广东紫金白溪省级自然保护区管理处;2.广州林芳生态科技有限公司;3.华南农业大学林学与风景园林学院
摘要:
森林是重要的碳库和水库, 定量其土壤碳、 水储量及分布特征对评估生态系统综合服务功能及 其价值具有重要意义。 以广东紫金白溪省级自然保护区为研究对象, 将保护区全域划分成 53 个网格单元, 系统分析了表层土壤 (0~20 cm) 在不同网格单元 (1 000 m×1 000 m)、 海拔梯度 ( <400 m、 400 ~ 600 m、 600~800 m 和≥800 m) 及功能分区 (核心区、 缓冲区和实验区) 的碳水分布空间特征及规律。 结果 表明, 保护区表层土壤有机碳储量和土壤水分储量分别为 (45. 64±2. 26) t·hm -2 和 (48. 66±2. 33) t· hm -2 , 整体表现为从东北区域向西南区域逐渐递减的空间分布格局。 从垂直分布特征来看, 600 ~ 800 m 海拔区间土壤有机碳含量 ( 25. 49 ± 1. 79 g·kg -1 )、 土壤含水量为 ( 26. 51% ± 1. 40%)、 田间持水量 (32. 00%±1. 18%) 和最大持水量 (35. 37%±1. 58%) 均最高。 就不同功能区而言, 土壤有机碳含量和持 水能力呈现明显的空间分异特征, 其中缓冲区最高、 实验区最低。 进一步分析表明, 土壤有机碳含量与土 壤 pH、 容重呈显著负相关 (P<0. 05), 与土壤总孔隙度、 毛管孔隙度及土壤含水量呈显著正相关 (P< 0. 05)。 土壤有机碳对土壤物理特性的改良及土壤水库功能的提升具有关键性作用。
关键词:  水源涵养  森林碳库  森林水库  土壤有机碳  土壤含水量
DOI:
分类号:
基金项目:2024 年绿美广东生态建设重点任务保障专项资金 (ZJZTGJ202403C022)。
Carbon and Water Storage and Their Spatial Distribution in Forest Surface Soil of Guangdong Zijin Baixi Nature Reserve
LI Yufeng1, ZHANG Meng2, MEI Qiming3, REN Yunyun4, LI Xue4, LIU Xiaodong4
1.Guangdong Zjin Baixi Provincial Nature Reserve,Zijin;2.Guangzhou Lin Fang Ecological Limited Company,Guangzhou;3.Guangzhou Linfang Ecological Technology Co. , Ltd;4.College of Forestry and Landscape Architecture,South China Agricultural University,Guangzhou
Abstract:
Forests serve as critical carbon and water reservoirs. Quantifying the storage and distribution characteristics of soil carbon and water is essential for evaluating the comprehensive services and value of forest ecosystems. This study investigated the Guangdong Zijin Baixi Provincial Nature Reserve. The entire reserve was divided into 53 grid units (1 000 m×1 000 m). A systematic analysis was conducted on the spatial characteristics and patterns of carbon and water distribution in the surface soil layer (0-20 cm) across different grid units, elevation gradients (<400 m, 400-600 m, 600-800 m, and ≥800 m), and functional zones (core area, buffer area, and experimental area). The results showed that the soil organic carbon storage and soil water storage in the surface layer were (45. 64±2. 26) t·hm -2 and (48. 66±2. 33) t·hm -2 , respectively, exhibiting an overall spatial distribution pattern that gradually decreases from the northeast to the southwest. In terms of vertical distribution, the highest values of soil organic carbon content (25. 49±1. 79 g·kg -1 ), soil water content (26. 51% ± 1. 40%), soil field capacity ( 32. 00% ± 1. 18%), and maximum water - holding capacity (35. 37%±1. 58%) were all observed within the 600-800 m elevation range. Across functional zones, soil organic carbon content and water-holding capacity displayed significant spatial heterogeneity, with the highest values found in the buffer zone and the lowest in the experimental zone. Further analysis indicated that soil organic carbon content was significantly negatively correlated with soil pH and bulk density (P<0. 05), and significantly positively correlated with total porosity, capillary porosity, and soil water content (P<0. 05). Soil organic carbon play
Key words:  water conservation  forest carbon pool  forest water retention  soil organic carbon  soil water content