引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 40次   下载 46 本文二维码信息
码上扫一扫!
分享到: 微信 更多
秦皇岛市 5 个树种生物量模型研建
赵忠宝1, 文嘉禄2, 宋 瑜3, 贲扬骁4, 刘 辉5
1.河北环境工程学院;2.东北林业大学;3.河北环境工程学院生态学系,河北环境工程学院/ 河北省农业生态安全重点实验室;4.秦皇岛市林业局;5.廊坊泽通林业工程设计有限公司
摘要:
建立单木生物量模型是开展森林生物量及碳储量评估的基础。 为准确估算秦皇岛市的森林生物 量和碳储量, 研究基于该市主要树种蒙古栎 Quercus mongolica、 油松 Pinus tabuliformis、 山杨 Populus davidiana、 胡桃楸 Juglans mandshurica 和毛白杨 Populus tomentosa 的实测生物量数据 (各树种样木为 12~26 株), 采用非线性度量误差联立方程组和加权回归的方法, 分别建立以胸径为自变量的单木恒定异速生长 比模型 (Constant allometric ratio, CAR) 和相容性生物量模型。 结果表明, 5 个树种单木一元 CAR 和相 容性生物量模型决定系数均在 0. 85 以上, 模型预测精度在 86%以上, 拟合效果较好, 预测精度较高。 5 个树种单木、 树干、 树枝的模型拟合参数优于树根、 树叶, 相容性生物量模型拟合参数优于 CAR 生物量 模型。 以胸径为自变量构建的 5 个树种预估生物量模型可用于秦皇岛市森林生物量及碳储量的估算。
关键词:  生物量模型  加权回归  预测精度  秦皇岛
DOI:
分类号:
基金项目:河北省科技厅重点研发计划项目碳达峰碳中和创新专项(22374208D)
Biomass Model of Five Tree Species in Qinhuangdao City
zhaozhongbao1, WEN Jialu2, SONG Yu3, BEN Yangxiao4, LIU Hui5
1.河北环境工程学院;2.College of Forest, Northeast Forestry University;3.Department of Ecology, Hebei University of Environmental Engineering,Hebei University of Environmental Engineering / Hebei Key Laboratory of Agroecological Safety;4.Qinhuangdao Forsestry Bureau;5.Langfang Zetong Forestry Engineering Design Co. Ltd.
Abstract:
The establishment of individual tree biomass model is the foundation for assessing forest biomass and carbon stocks. To accurately estimate the forest biomass and carbon stocks of Qinhuangdao City, this study utilized measured biomass data from the main tree species in this area, which include Quercus mongolica, Pinus tabulaeformis, Populus davidiana, Juglans mandshurica, and Populus tomentosa, with 12 to 26 sample trees per species. By applying the nonlinear measurement error simultaneous equations method combined with weighted regression, a Constant allometric ratio (CAR) model and a compatible biomass model for individual trees were developed, using diameter at breast height (DBH) as the independent variable. The results indicated that the coefficients of determination coefficients for the single tree CAR and compatible biomass models of the five tree species all exceeded 0. 85, and the prediction accuracies were all greater than 86%. Both models exhibited a good fit and a high predictive capability. For the five tree species, the model fit parameters were superior for individual trees, trunks, and branches comporred to those for roots and leaves, and the fit parameters fo the compatible biomass model were better than those of the CAR biomass model. The estimated biomass models of five tree species constructed with DBH as the independent variable can be used to estimate forest biomass and carbon storage in Qinhuangdao City.
Key words:  biomass model  weighted regression  prediction accuracy  Qinhuangdao City