摘要: |
为了提高深度学习模型对油茶林的提取精度, 研究基于目视标注和筛查, 构造了一个新造油
茶林分布数据集, 并提出了一种基于 SAM (Segment anything model) 特征编码的新造油茶林提取网络
CameFormer。 该网络以 MaskFormer 模型为基础架构, 整合了 SAM 分割大模型的特征编码能力, 联合提
取像素级和实例级特征, 用于从高分辨率遥感影像中识别新造油茶林。 实验结果显示, CameFormer 模型
的 F1 分数和 IoU 值分别达到 80. 05%和 66. 73%, 明显优于 UNet 等经典模型。 CameFormer 能在 0. 5 m 分
辨率遥感影像上高精度稳定检测具有明显新造纹理特征的油茶林。 |
关键词: 油茶 深度学习 SAM 高分辨率影像 |
DOI:10. 20221 / j. cnki. 2096-2053. 202504018 |
分类号: |
基金项目:国家自然科学基金青年科学基金项目 (C 类) (42501428), 中国博士后科学基金面上项目 (2024M763736), 广东省油茶 产业资源普查项目 (LC-2024110)。 |
|
Analysis of Extraction Network for Newly Planted Camellia oleifera Forests Based on SAM Feature Encoding |
denghongtao1, Dongdong Xue2, Keyao Wen3, Zuobing Yang4, Linjing Ju2, Mengxi Liu3
|
1.(Guangdong Lingnan Institute Survey and Design Co. , Ltd,;2.Guangdong Lingnan Institute Survey and Design Co. , Ltd;3.School of Geography and Planning, Sun Yat-sen University;4.Guangdong Forestry Survey and Planning Institute,
|
Abstract: |
To enhance the extraction accuracy of deep learning models for Camellia oleifera forests, this
study constructed a dataset of newly planted C. oleifera forests through visual annotation and screening. A dedicated extraction network named CameFormer was proposed, integrating SAM ( Segment anything model) for
feature encoding. Based on the MaskFormer architecture, this network jointly extracts pixel-level and instancelevel features to identify newly planted C. oleifera forests from high-resolution remote sensing images. The experimental results demonstrate that CameFormer achieves F1
-scores and IoU values of 80. 05% and 66. 73%, respectively, significantly outperforming classical models such as UNet. The proposed model enables high-precision and stable detection of newly planted C. oleifera forests with distinct textural characteristics on 0. 5 m resolution remote sensing imagery. |
Key words: Camellia oleifera deep learning SAM high-resolution image |