引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 835次   下载 1124 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于无人机多光谱影像的松材线虫病早期动态监测*
刘春燕1, 曾庆圣1, 李亭潞1, 杨振意1, 高亿波1, 陈湛昊2, 赵丹阳3, 孙思2
1.广东省森林资源保育中心;2.华南农业大学林学与风景园林学院;3.广东省林业科学研究院
摘要:
研究利用搭载多光谱传感器的无人机航拍监测感染松材线虫病早期未表现症状的马尾松 Pinus massoniana。试验方法是航拍后生成每株松树的 NDVI 值,然后观察 NDVI 值最低的松树(理论上代表最衰弱的松树)是否首先被清理。结果表明,2021 年 5 月监测判定的衰弱松树(第一轮监测 NDVI 值最低为 0.512 815 和 0.523 893;第二轮监测 NDVI 值最低为 0.507 846 和 0.526 113)均不是最早清理的松树。根据这一结果调整了试验时间,改为 2021 年 11 月监测,得出的最衰弱松树(NDVI 值最低为 0.318 315和 0.383 832)与最早清理的松树一致。这一结果为航拍监测病死松树的时机提出了新的思路,也从另一个角度证明了松材线虫病潜伏侵染的存在。
关键词:  松材线虫病  早期监测  多光谱影像  归一化植被指数  清理  病死松树
DOI:
分类号:
基金项目:广东省林业科技计划项目(F2109CC10-ZCY3)。
Early Dynamic Detection of Pine Wilt Disease Based on UAV Multispectral Imagery
liuchunyan1, zengqingsheng1, litinglu1, yangzhenyi1, gaoyibo1, chenzhanhao2, zhaodanyang3, sunsi2
1.Forest Resources Conservation Center of Guangdong Province;2.College of Forestry and Landscape Architecture, South China Agricultural University;3.Guangdong Academy of Forestry
Abstract:
In this study, the UAV equipped with multispectral sensors was used to monitor the pines infected with pine wilt disease, but without symptoms. The test method is to generate the NDVI value of each pine after aerial photography, and then observe whether the pine with the lowest NDVI value (theoretically representing the weakest pine) is cleared first. The results showed that the pines (the lowest NDVI values in the first round of monitoring were 0.512 815, 0.523 893; the lowest NDVI values in the second round of monitoring were 0.507 846, 0.526 113) determined by monitoring in May 2021 were not the first to be cleared. According to this result, the monitoring time was adjusted to November 2021. The weakest pines (the lowest NDVI values were 0.318 315, 0.383 832) were consistent with the pines that were first cleared. This result provided a new idea for the time of monitoring dead pines by aerial photography, and also proved the existence of latent infection of PWD from another angle.
Key words:  Pine wilt disease  early detection  multispectral imagery  NDVI  clearance  dead pine