引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1079次   下载 710 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于ResNet网络的小蠢虫识别研究
华月珊1, 王佳新2, 戎洁庆2, 华国栋2, 李莉2
1.广州市辰景生态技术服务有限责任公司;2.河北工程大学
摘要:
随着人工智能的发展,视觉感知技术为林业害虫识别防治提供了新方法和实现思路。论文提出一种基于深度感知神经网络框架实现小蠢虫的检测识别,检测系统具体采用了特征金字塔结构、形变结构和新型非极大值抑制技术进行构建,其准确率达到了96.32%。这说明了基于人工智能技术方案识别林业害虫的可行性。与传统方法相比,此方法在精准识别林业害虫的同时,有效减少不必要的资源消耗。
关键词:  林业病虫害  小蠢虫检测识别  深度神经网络
DOI:
分类号:
基金项目:邯郸市科学技术研究与发展计划项目(1721203049-1)
Research on Scolytidae Recognition and Identification based on ResNet Network
huayueshan1, Wang Jiaxin2, Rong Jieqing2, Hua Guodong2, Li Li2
1.Guangzhou Chenjing Ecological Technology Service Co., Ltd;2.School of Information and Electrical Engineering, Hebei University of Engineering
Abstract:
With the development of artificial intelligence, vision perception technology provides new methods and implementation ideas for the control of forest pests. In this paper, a forest pest identification framework based on depth perception neural network is proposed to detect and identify Scolytidae . The detection system contains feature pyramid structure, deformable convolution structure and non maximum suppression, which the pest identification model is 96.32%. Compared with traditional methods, this method can accurately identify forest pests and effectively reduce the consumption of unnecessary resources.
Key words:  forest diseases and insect pests  Scolytidae recognition and identification  depth neural network