引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2399次   下载 2736 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于全球数据库的森林土壤呼吸模型研究
田秋燕1, 赵正勇1, 杨旗1, 朱航勇2
1.广西大学林学院;2.广东省林业科学研究院
摘要:
森林土壤呼吸在陆地生态系统的碳平衡中发挥了重要作用,准确估算森林土壤呼吸量对于了 解陆地碳平衡的变化至关重要。这项研究以全球气候数据、全球森林土壤呼吸数据库为基础数据,通过 开发人工神经网络(ANN)模型建立由年平均气温(MAT)、年平均降水(MAP)、森林类型驱动的土壤 呼吸模型,预测全球森林土壤呼吸变化。模型估算的结果表明,从 1960 年到 2017 年,全球森林平均年 土壤呼吸量为 40.10±0.48 Pg C yr-1,全球森林土壤对全球土壤呼吸的贡献在 40.9% - 49.8% 之间。人工神 经网络模型预测的准确度达到 0.63,进一步改善了全球森林土壤呼吸模型预测的精度。
关键词:  全球气候数据  全球森林土壤呼吸数据库  森林生态系统  人工神经网络
DOI:
分类号:
基金项目:广西自然科学“一个新的全球土壤呼吸模型”(20160831)。
Study on Forest Soil Respiration Model Based on Global Databases
Tian Qiuyan,Zhao Zhengyong,Yangqi,Zhuhangyong
Forestry College of Guangxi University
Abstract:
Forest soil respiration is a critical process in the carbon cycling of terrestrial ecosystems. It is very important to estimate the rate of annual forest soil respiration for understanding the change of carbon balance. Based on global climate data and global forest soil respiration databases, this study developed an artificial neural network (ANN) model driven by mean annual temperature (MAT), mean annual precipitation (MAP) and forest types to predict the changes of global forest soil respiration. From 1960 to 2017, the average annual soil respiration of global forest was 40.10±0.48 Pg C yr-1, which contributed between 40.9% and 49.8% to the global soil respiration. The prediction accuracy of artificial neural network model reached 0.63 in this study, which further improved the performance of the global forest soil respiration model.
Key words:  global climate data  global forest soil respiration database  forest ecological system  artificial neural network