引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3128次   下载 2868 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于神经网络的杉木人工林碳通量影响因素的选择
温旭丁,赵仲辉,邓湘雯
中南林业科技大学,中南林业科技大学,中南林业科技大学
摘要:
对碳循环影响因素的研究是预测碳通量的重要环节,也是研究碳循环的重要基础。利用亚热带地区湖南省会同杉木人工林生态系统国家野外科学观测研究站2008年7—9月的碳通量和环境因子观测数据,采用遗传神经网络模型对碳通量预测因素进行优化选择,并与传统的相关分析方法进行对比分析。结果表明:模型CIV.8(输入参数包括空气温度Ta、光合有效辐射Par、大气CO2浓度ρc、空气相对湿度Rh、风速Ws、土壤温度Ts)是所有模型中模拟效果最好的。光合有效辐射与碳通量的相关性最强,相关系数是-0.704(P=0.000);降雨量与碳通量的相关性最弱,相关系数是0.002(P=0.854)。最多输入变量或最复杂的神经网络结构并不能得到最好的模型。
关键词:  遗传神经网络  相关分析  碳通量  预测因子
DOI:
分类号:S718.55 4.2
基金项目:国家“973”计划项目专题“中国陆地生态系统碳—氮—水通量的相互关系及其环境影响机制”(2010CB833500)。
Factors Selection for Affection of Carbon Flux Based on Artificial Neural Network
Wen Xu-Ding,Zhao Zhong-Hui and Deng Xiang-Wen
Central South University of Forestry and Technology,Central South University of Forestry and Technology
Abstract:
Selecting the affection factors for carbon cycle is a critical step for predicting carbon flux and the foundation to study the mechanism of carbon cycle. In this paper, C flux and meteorological data were collected over a three months period between July and September in 2008 at Huitong National Research Station of Forest Ecosystem. This paper proposes a method of driving factors selection based on artificial neural network (ANN). What is more, ANN is used to select the driving factors according to the criteria that model showed. Finally, the results based on ANN were compared to correlation analysis. The results showed that CIV.8 (input parameters included Ta, Par,ρc, Rh,Ws,Ts) model was the best of all models. The strongest correlation was between Parand carbon flux (R=-0.704, P=0.000); but Precipitation (Prec) had weak positive correlation with carbon flux (R=0.002, P=0.854). The best results pertaining to ANN modeling do not derive from structure complexity or a greater number of input parameters.\
Key words:  genetic neural network  correlation analysis  carbon flux  factors selection