引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2982次   下载 2682 本文二维码信息
码上扫一扫!
广州市3种典型人工林碳储量及分布特征研究
林雯,周平,魏龙
0
(华南农业大学林学院;广东省林业科学研究院)
摘要:
采用样方法和取样法,研究广东省广州市流溪河林场黧蒴、木荷、杉木林生态系统碳含量、碳储量及其空间分布特征。结果表明:林木各器官平均碳含量为杉木(490.99 g·kg-1)>黧蒴(447.18 g·kg-1)>木荷(442.52 g·kg-1),各器官间存在差异,从高到低排列顺序杉木为皮>叶>枝>干>根;木荷为干>根>皮>枝>叶;黧蒴为叶>干>枝>根>皮; 林分内乔木层碳储量为黧蒴(103.08 t·hm-2)>木荷(83.19 t·hm-2)>杉木(20.67 t·hm-2)。地被植物和枯落物碳含量均表现为灌木层>草本层>枯落物层。林地土壤容重随土层的加深而增大,各层次碳含量呈下降趋势且分布不均,表层(0~25 cm)土壤碳含量较高,3种林分土壤碳储量排序为木荷(154.52 t·hm-2)>黧蒴(146.75 t·hm-2)>杉木(131.29 t·hm-2)。3种人工林生态系统碳库的空间分布序列为土壤层>植被层>枯落物层。黧蒴林乔木层年净生产力为9.22 t·hm-2·a-1,是木荷的1.32倍、杉木的1.97倍,年净生产力阔叶林树种大于针叶林杉木;年净固碳量黧蒴为4.12 t·hm-2·a-1,木荷为3.08 t[DK1]·hm-2·a-1,分别为杉木的1.79和1.34倍;各林分生态系统乔木层同化 CO2能力为黧蒴>木荷>杉木。阔叶树种黧蒴(25 a生)和木荷(27 a生)的林分固碳能力优于针叶树种杉木(9 a生)。
关键词:  碳储量  黧蒴  木荷  杉木  流溪河林场
DOI:
投稿时间:2014-02-28修订日期:2014-03-31
基金项目:林业公益性行业科研专项“提高城市森林固碳能力的关键技术研究与示范”(201104075);广东省林业科技创新专项(2010KJCX012-01,2011KJCX031-01)
Spatial Distribution of Carbon Storage of Three Forests Ecosystem in Guangzhou, China
LINWEN,zhouping
(Guangdong Academy of Forestry)
Abstract:
The authors have investigated the content, storage and spatial distribution of carbon in Castanopsis fissa, Schima superba, Cunninghamia lanceolata forest ecosystems of Liuxihe Forest Farm, which is in Guangzhou City, Guangdong Province, China. The resuts showed that average carbon concentrations of different organs were Cunninghamia lanceolata(490.99 g·kg-1)>Castanopsis fissa (447.18 g·kg-1)>Schima superba ( 442.52g]·kg-1). There were differences between each organs, varied with tree organs in the same tree species. The different organs of Cunninghamia lanceolata forest decreased in the order of bark>leaf>branch>trunk>root; while it was trunk>root>bark>branch>leaf of Schima superband leaf>trunk>branch>root>bark of Castanopsis fissa. The order of tree layer carbon storage were Castanopsis fissa (103.08 t·hm-2)>Schima superba(83.19 t·hm-2)>Cunninghamia lanceolata (20.67 t·hm-2). The amount of carbon were shrub>herb>litterfall layers. Soil bulk density increased along with the deepening of soils, while the carbon content declined and uneven distribution. The surface layer (0 to 25 cm) soil carbon content was higher than the other layers, carbon content in the soils were Schima superb (154.52 t·hm-2)>Castanopsis fissa (146.75 t[DK1]·hm-2)>Cunninghamia lanceolata (131.29 t[·hm-2). Carbon stocks in the different components of the three forest ecosystems were in an order as: soil>vegetation>litterfall. The annual net primary productivity was estimated to be 9.22 t·hm-2·a-1in the Castanopsis fissaforests, which was 1.32 times of Schima superb forests and 1.97 times of Cunninghamia lanceolata forests. The annual carbon storage was 4.12 t·hm-2·a-1 of Castanopsis fissa forests and 3.08 t·hm-2·a-1of Schima superb forests, which was 1.79 times and 1.34 times of Cunninghamia lanceolata. The tree layer assimilation ability of CO2 was Castanopsis fissa>Schima superba>Cunninghamia lanceolata. Carbon sequestration ability of broad leaved forests such as Castanopsis fissa (25 a) and Schima superba(27 a) was better than the coniferous forest as Cunninghamia lanceolata(9 a).
Key words:  carbon storage  Castanopsis fissa  Schima superb  Cunninghamia lanceolata  Liuxihe Forest Farm

用微信扫一扫

用微信扫一扫