红皮柳 SpXTHs 基因家族鉴定及表达分析*

胡志宝 荆 烁 林 阳 申逸男

胡芳媛 张皓凯 王洪江

(辽宁省旱地农林研究所,辽宁朝阳 122099)

摘要 为进一步鉴定红皮柳 Salix purpurea 的 SpXTHs 基因家族的生物学功能,通过生物信息学方法 从红皮柳基因组中鉴定了 31 个 SpXTHs 基因,并对该家族成员的理化性质、表达模式、进化等进行分析。 通过系统发育分析,表明 31 个 SpXTHs 成员可分为 4 个进化分枝,每个分枝内的基因具有相似的基因结 构;通过分析 SpXTHs 家族成员的蛋白保守结构域,发现 SpXTHs 家族成员均含有 Glyco_hydro_16 和 XET_C 两个蛋白保守结构域,具有高度相似的保守基序; SpXTHs 含有 241~374 个氨基酸残基,该蛋白家族成员 长度及分子量有较大差异,相对分子质量约为 27~42 kDa,等电点均为酸性。根据全基因组分析结果, SpXTHs 基因经历了全基因组复制事件和片段重复事件。红皮柳与拟南芥 Arabidopsis thaliana、甘蓝 Brassica oleracea var. capitata 和水稻 Oryza sativa 的比较同线图表明,红皮柳与拟南芥、甘蓝和水稻 XTHs 基 因均具有同线关系。通过对 SpXTHs 基因启动子区域进行顺式作用元件预测,共鉴定出 7 种顺式作用元 件。在 3% NaCl 溶液处理后,红皮柳根部共有包括 SpXTH1、SpXTH5 等 7 个基因高表达。该研究鉴定了红 皮柳 SpXTHs 基因家族共计 31 个成员,并进行了生物信息学分析,为红皮柳 SpXTHs 蛋白功能的后续分子 机制解析提供了实验数据支撑。

关键词 红皮柳;木葡聚糖内转葡糖基酶/水解酶;生物信息学;表达特征
中图分类号: S792 文献标志码:A 文章编号: 2096-2053 (2025) 02-0010-10
DOI: 10.20221/j.cnki.2096-2053.202502002

Identification and Expression Analysis of the SpXTHs Gene Family in Salix purpurea

HU Zhibao JING Shuo LIN Yang SHEN Yi'nan HU Fangyuan ZHANG Haokai WANG Hongjiang

(Liaoning Institute of Agriculture & Forestry in Arid Areas, Chaoyang, Liaoning 122099, China)

Abstract In order to further identify the biological functions of the *SpXTHs* gene family of *Salix purpurea*, 31 *SpXTHs* genes were identified from the genome of *S. purpurea* through bioinformatics methods, and the physical and chemical properties, expression patterns, and evolution of the family members were analyzed. Phylogenetic analysis showed that the 31 *SpXTHs* members could be divided into four evolutionary branches, and the genes in each branch had similar gene structures. By analyzing the protein conserved domains of *SpXTHs* family members, it was found that all *SpXTHs* family members contained two protein conserved domains, Glyco_

^{*}基金项目:中国科学技术协会定点帮扶第一批项目(2024ddbfxczx-04)。

第一作者:胡志宝(1997—),男,助理工程师,主要从事林木育种工作。E-mail: 2352006411@ qq. com

通信作者: 王洪江 (1982—), 男, 正高级工程师, 主要从事林木育种工作。E-mail: wanghongjiang0902@126.com

hydro_16 and XET_C, and had highly similar conserved motifs; SpXTHs contained 241-374 amino acid residues. Members of this protein family vary greatly in length and molecular weight. The molecular weight is about 27~42 kDa, and the isoelectric point is acidic. Based on the whole-genome analysis, the *SpXTH* genes underwent whole-genome duplication events and segmental duplication events. Comparative synteny analysis revealed that *S. purpurea* shares syntenic relationships with *XTHs* genes in *Arabidopsis thaliana*, *Brassica oleracea* var. *capitata*, and *Oryza sativa*. Prediction of cis-acting elements in the promoter regions of *SpXTH* genes identified seven types of cis – acting regulatory elements. Following treatment with 3% NaCl, seven genes, including *SpXTH1* and *SpXTH5*, exhibited significantly high expression levels in the roots of *S. purpurea*. In this study, a total of 31 members of the *SpXTHs* gene family of *S. purpurea* were identified and bioinformatics analysis was carried out, which provided important information for further identification of the biological function of *S. purpurea SpXTHs* proteins.

Key words *Salix purpurea*; xyloglucan endotransglucosylase/hydrolase; bioinformatics; expression profile

木葡聚糖是非禾本科单子叶植物和双子叶植物 初生细胞壁中半纤维素的主要组成部分, 它通过非 共价键包裹并交联相邻的纤维素微纤维形成一个动 态的纤维素-木葡聚糖细胞壁框架,构成植物细胞壁 的主要承重体系[1-2]。此外,木葡聚糖在一些植物 的种子发育过程中起到储备作用,如在旱金莲种子 发育过程中,木葡聚糖会在子叶细胞壁内侧大量 积累,在后续的发芽过程中被水解,为种子萌发 提供养分[3]。木葡聚糖内转葡糖基酶/水解酶 (Xyloglucan endotransglucosylase/hydrolase XET/ XEHs, XTHs) 是一类木葡聚糖修饰酶, 属于糖苷 水解酶家族 16^[4],具有木葡聚糖内切转葡萄糖基化 酶(XET活性)和木葡聚糖内切水解酶(XEH活 性)两种催化活性^[5]。XTHs 在木葡聚糖的交联和 重构中发挥重要作用,其中 XET 结构域切割一个木 葡聚糖链,并将还原端重新连接到另一个木葡聚糖 分子,造成木葡聚糖的延伸;XEH 结构域则将木葡 聚糖还原端重新连接到水分子上,导致木葡聚糖链 不可逆缩短^[6-7]。因此 XTHs 是植物细胞发育过程中 控制细胞壁伸展的关键酶^[8],调控主根伸长^[9]、下 胚轴生长^[10]、叶脉分化^[11]、开花^[12]、花瓣脱落^[13] 及木材发育^[14]等生理过程。此外, XTHs 对番茄 Solanum lycopersicum、梨 Pyrus spp、荔枝 Litchi chinensis 等水果的软化也有影响^[15]。

大量研究表明,XTH 基因的表达受到植物激 素及非生物胁迫的调控。如赤霉素可以上调水稻 Oryza sativa 的 OsXTH8 的表达^[16]。生长素和油菜 素内酯能诱导拟南芥 Arabidopsis thaliana 的 At-XTH3、AtXTH4、AtXTH17、AtXTH22 和 AtXTH23 上调表达,此外,生长素抑制 AtXTH15 和 At-XTH21 表达,而赤霉素则抑制 AtXTH26 的表 达^[17]。玉米 Zea mays 的 ZmXTHs 受到干旱胁迫导 致表达量显著提高^[18];水稻 OsXET9 受到寒冷胁 迫导致表达量显著提高^[19]。

柳树是生态养护的重要木本树种,具有丰富的 品种资源。红皮柳 Salix purpurea 为杨柳科柳属落叶 灌木,是我国西北干旱、半干旱地区重要的乡土树 种,具有生长迅速、耐旱、耐盐碱、萌蘖力强、热 值高等优点,用于防风固沙、编织和生物质能源等, 发挥了巨大的经济效益和生态效益。其中一个最值 得注意的优点是,柳属灌木树种从排水不良到排水 良好的休耕地均可生长,还可以增强土壤性质和微 生物多样性。人们发现了数百种不同特征的柳属灌 木树种基因型,其中许多基因型具有一定的耐盐性, 因此,筛选和选育具有高耐盐性的新基因型已成为 一项具有挑战性的任务^[20]。

随着技术的发展,在单子叶植物和双子叶植物 中都发现了 XTHs 的多基因家族,如拟南芥、水稻、 小麦 Triticum aestivum、高粱 Sorghum bicolor、烟草 Nicotiana tabacum 和杨树 Populus przewalskii 等。本 研究基于红皮柳全基因组数据库,结合生物信息学 手段,将红皮柳中的 SpXTHs 家族基因进行了全基 因组分析与鉴定,为进一步研究红皮柳中 SpXTHs 基因表达的调控和功能提供了科学依据。

1 材料与方法

1.1 红皮柳 SpXTHs 基因家族的鉴定

使用两种方法筛选确定红皮柳中的 SpXTHs 家

族成员。其一在红皮柳数据库(https://phytozomenext. jgi. doe. gov/info/Spurpurea)^[21] 中使用拟南 芥的 AtXTHs 作为参考,通过 BlastP 在红皮柳中在 线搜索 AtXTHs 直系同源序列。另一方面,从 TAIR (https://www.arabidopsis.org) 数据库中下 载已发布的拟南芥 AtXTHs 的蛋白序列作为参考, 在 interpro 数据库 (https://www.ebi.ac.uk/interpro/)^[22]下载隐马尔可夫模型(HMM)文件 (PF00722、PF06955),在HMMER (v 3.1)^[23] 工 具中使用 hmmsearch 命令来识别 Phytozome v13.0 数据库中的 SpXTHs。通过 ExPASy 在线程序(http://www.expasy.org/) 分析红皮柳 SpXTHs 蛋白 的基本特征,如相对分子量、等电点、氨基酸数、 脂肪族指数和蛋白质的亲疏水性指数 (GRA-VY)^[24]。使用 Wolfpsort 在线工具预测 SpXTHs 蛋 白的亚细胞定位^[25]。

1.2 SpXTHs 基因家族结构分析

使用在线软件 GSDS 2.0 (Gene Structure Display Server: http://gsds.cbi.pku.edu.cn/)^[26] 预 测 *SpXTHs* 基因的外显子和内含子分布模式。使用 在线 软 件 MEME 5.0.5 (http://meme - suite.org/)^[27] 预测 *SpXTHs* 的基因的结构域。

1.3 氨基酸序列的多序列比对及系统发育分析

使用 MGEA7^[28,29] 软件的 Neighbor – Joining (NJ) 算法^[30],构建红皮柳 *SpXTHs* 与拟南芥 *At-XTHs* 的系统进化树。

1.4 SpXTHs 基因家族的染色体分布和基因重复

利用 Phytozome 数据库检索 *SpXTHs* 基因的位置信息,利用 MG2C 2.0 工具(http://mg2c.iask.in/mg2c_v2.0)构建 *SpXTHs* 染色体分布图。JGI 中搜索并下载红皮柳及其他选定物种(拟南

芥、甘蓝、水稻)的 gff3 文件,并使用 TBtools 软件构建共线分析图。利用多重共线性扫描工具包来探索 *SpXTHs* 基因复制事件^[31]。

1.5 SpXTHs 基因家族启动子区域顺式作用元件 分析

从 Phytozome 数据库收集起始密码子的 2 000 bp 上游序列,并使用 PlantCARE 在线服务平台 (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)^[32]分析已知序列的顺式作用元件, 使用 TBtools^[31]进行可视化绘图。

1.6 红皮柳 SpXTHs 基因家族的表达分析

从 NCBI (https://www.ncbi.nlm.nih.gov/) 数据库中下载盐胁迫处理的红皮柳根部转录组数 据 (SRA 登录号为 PRJNA639011)^[33],在 R 语言 中对基因表达数据进行分析及可视化,结果以热 图方式呈现。

2 结果与分析

2.1 红皮柳 SpXTHs 基因家族成员的鉴定和分析

以拟南芥 AtXTHs 为探针序列,对红皮柳 SpXTHs 进行鉴定和分析。通过 Pfam 分析和 HM-MER 预测,共鉴定出 31 个同时包含 Glyco_hydro_ 16 和 XET_C 两个蛋白保守结构域的红皮柳 SpXTHs 基因。对 SpXTHs 基因的理化性质(表 1)分析得出如下结果: SpXTHs 蛋白长度为 241~ 374 个氨基酸;等电点为 4.90~9.51;分子量约为 27~42 kDa; GRAVY 的值都为负,所以都具有亲 水性;通过预测 SpXTHs 蛋白的亚细胞定位,发现 大多数 SpXTHs 蛋白定位于细胞壁上,其余 SpXTHs 蛋白在叶绿体、液泡、细胞核等多种细胞 器上。

表 1 红皮柳基因组中鉴定出的 SpXTHs 基因及其多肽参数

_										
	基因	Phytozome v3.0基因 ID	氨基酸数 量 AA	相对分 子质量	等电点	脂肪族 指数	亲水性	染色体 定位	亚细胞 定位	Gnenbank 登录号
	SpXTH1	Sapur. 001G 056000. 1	293	33 940. 44	7.63	66. 21	-0.394	Chr01: 38281533 (31104 (+)	叶绿体	KAJ6712874. 1
	SpXTH2	Sapur. 018G 070800. 1	291	32 283.11	5.27	72.16	-0.330	Chr18: 79696367 971502 (+)	细胞壁	KAJ6731600. 1
	SpXTH3	Sapur. 002G 048200. 1	278	31 323.44	7.62	77. 19	-0.236	Chr02: 35733183 574368 (-)	细胞壁	KAJ6685156. 1
	SpXTH4	Sapur. 001G 112100. 1	352	40 979.28	8. 93	59.83	-0. 541	Chr01: 81483158 151335 (+)	叶绿体	KAJ6712142. 1
	SpXTH5	Sapur. 008G 112200. 1	336	38 082.88	6.00	75.42	-0.361	Chr08: 75824957 585407 (+)	液泡	KAJ6726170. 1

——————————————————————————————————————	Phytozome v3.0基因 ID	氨基酸数 量 AA	相对分 子质量	等电点	脂肪族 指数	亲水性	染色体 定位	亚细胞 定位	Gnenbank 登录号
SpXTH6	Sapur. 010G 071500. 1	374	42 804.37	6. 46	74. 81	-0. 253	Chr10: 59224975 925510 (+)	液泡	KAJ6719052.1
SpXTH7	Sapur. 005G 158400. 1	294	33 077.33	8. 47	71.67	-0.316	Chr05: 145917671 4593078 (+)	细胞壁	KAJ6773985.1
SpXTH8	Sapur. 014G 118500. 1	284	32 168.45	9. 04	67.01	-0. 298	Chr14: 85624468 564176 (-)	细胞壁	KAJ6680356. 1
SpXTH9	Sapur. 005G 158300. 1	294	33 025. 27	8.48	71.33	-0.290	Chr05: 145881521 4589561 (+)	细胞壁	KAJ6773987. 1
SpXTH10	Sapur. 006G 139000. 1	285	32 436. 28	6.07	68.39	-0.384	Chr06: 122243801 2225648 (-)	细胞壁	KAJ6698749. 1
SpXTH11	Sapur. 013G 005200. 1	296	32 890. 95	5. 51	68.95	-0.321	Chr13: 3075033 08849 (+)	细胞壁	KAJ6762535. 1
SpXTH12	Sapur. 002G 182500. 1	288	32750.94	8.96	66. 39	-0.331	Chr02: 155715661 5573398 (+)	过氧化 物酶体	KAJ6686971.1
SpXTH13	Sapur. 014G 113800. 1	293	33 903. 30	8. 44	67.24	-0. 492	Chr14: 81961788 198550 (+)	叶绿体	KAJ6680297. 1
SpXTH14	Sapur. 002G 048300. 1	294	33 319.74	8. 89	70.34	-0.343	Chr02: 35803813 581724 (+)	液泡	KAJ6685157. 1
SpXTH15	Sapur. 003G 118000. 1	298	34 668.32	7. 59	65.77	-0.411	Chr03: 104097271 0412106 (-)	叶绿体	KAJ6705223. 1
SpXTH16	Sapur. 011G 053700. 1	293	33 389.63	7.64	68. 53	-0.369	Chr11: 49170614 919203 (+)	内质网	KAJ6770056. 1
SpXTH17	Sapur. 006G 057600. 1	285	31 797.88	8. 50	66. 81	-0. 281	Chr06: 41341894 135773 (+)	细胞壁	KAJ6699765. 1
SpXTH18	Sapur. 011G 053800. 1	275	31 359.45	9. 51	72.69	-0. 455	Chr11: 49277964 929569 (+)	液泡	KAJ6770057. 1
SpXTH19	Sapur. 007G 006500. 1	296	34 033.64	8. 18	71.22	-0. 290	Chr07: 4622584 64241 (-)	液泡	KAJ6739874. 1
SpXTH20	Sapur. 013G 135900. 1	293	33 384.40	5.64	62.90	-0. 395	Chr13: 140741931 4077088 (-)	细胞壁	KAJ6763730. 1
SpXTH21	Sapur. 009G 065500. 1	294	34 348.72	9. 16	64.63	-0. 547	Chr09: 59382855 939729 (-)	细胞核	KAJ6692343. 1
SpXTH22	Sapur. 002G 189100. 1	293	33 650. 37	5.67	61.57	-0. 587	Chr02: 160117161 6013539 (+)	叶绿体	KAJ6687062. 1
SpXTH23	Sapur. 019G 109000. 1	295	33 410. 49	5.71	67.08	-0.325	Chr19: 137969881 3799471 (+)	细胞壁	KAJ6745149. 1
SpXTH24	Sapur. 004G 013200. 1	292	33877.94	4. 90	58.15	-0. 548	Chr04: 9204189 22195 (+)	细胞壁	KAJ6767296. 1
SpXTH25	Sapur. 018G 061200. 1	291	33 008. 11	9. 41	64.40	-0. 424	Chr18: 69913406 992989 (+)	叶绿体	KAJ6731494. 1
SpXTH26	Sapur. 009G 003500. 1	298	33 757. 82	6. 16	65. 81	-0. 518	Chr09: 3536133 55675 (-)	叶绿体	KAJ6691505. 1
SpXTH27	Sapur. 005G 005300. 1	241	27 521.94	5.03	68.42	-0.363	Chr05: 3778033 78720 (-)	细胞核	KAJ6775615. 1
SpXTH28	Sapur. 006G 101100. 1	294	33 952.46	9. 43	61.43	-0. 423	Chr06: 76001487 602248 (-)	叶绿体	KAJ6699196. 1
SpXTH29	Sapur. 003G 063600. 1	347	40 208. 32	8. 62	57.95	-0. 521	Chr03: 65998096 602927 (-)	细胞壁	KAJ6705914. 1
SpXTH30	Sapur. 009G 128300. 1	305	33 843.78	5. 23	69.70	-0.237	Chr09: 98446799 845597 (+)	细胞壁	KAJ6759937. 1
SpXTH31	Sapur. 014G 091800. 1	320	36 131.71	6. 92	75.22	-0. 295	Chr14: 67224576 724602 (+)	叶绿体	KAJ6680018. 1

L/II

注:利用邻接法构建系统进化树。蓝色表示 Ancestral group 亚家族,紫色表示 ⅢA 亚家族,绿色表示 ⅢB 亚家族,黄色表示 Ⅱ/Ⅲ 亚家族。

图 1 红皮柳与拟南芥 XTH 蛋白的系统发育树

Figure 1 Phylogenetic analysis of XTH protein between Salix purpurea and Arabidopsis thaliana

2.2 红皮柳 SpXTHs 基因家族的系统发育分析

构建红皮柳和拟南芥 *AtXTHs* 的系统发育树, 分析结果显示(图2),31个 *SpXTHs* 蛋白分为4个 进化分支,其中 *SpXTH22* 位于 Ancestral group 亚家 族中,两个成员(*SpXTH26*和 *SpXTH28*)位于ⅢA 亚家族中,6个成员(*SpXTH4、SpXTH5、SpXTH6、 SpXTH29、SpXTH30*和 *SpXTH31*)位于ⅢB 亚家族 中,其余22个成员位于I/II亚家族中。

2.3 红皮柳 SpXTHs 基因结构和保守基序分布 分析

通过构建 SpXTHs 的系统发育树,可以进一步 了解 SpXTHs 之间的进化关系。分析结果表明(图 2),31 个 SpXTHs 均具有 motrf1、motrf2、motrf3 和 motrf5,它们的长度分别为50、41、35、14 aa, 因此推测以上4个保守基序可能是 SpXTHs 家族的 特征保守基序;不同 SpXTHs 之间的保守基序略有 差异,表明不同 SpXTHs 蛋白功能可能存在一定差异。

2.4 红皮柳 SpXTHs 基因的染色体分布和同义性 分析

为了了解 *SpXTHs* 的进化过程,利用 Phytozome 数据库检索的 *SpXTHs* 基因家族成员的位置 信息,绘制了 *SpXTHs* 基因家族成员的染色体位置 分布,结果如图 3。使用 Multiple collinear scanning toolkits (MCScanX)分析 *SpXTHs* 基因组复制事 件。结果如图 4,片段复制事件是 *SpXTHs* 基因家 族扩增的主要驱动因素。

为了进一步了解 SpXTHs 基因家族成员的系统 发生机制,我们构建了红皮柳、拟南芥、甘蓝和 大豆的比较同线图 (Comparative syntenic maps)。 结果如图 5,红皮柳与拟南芥的 XTHs 基因高度同 源,其共线性基因对为 20 对,其次是甘蓝和水稻,

注: A:采用邻接法构建的 SpXTHs 的系统发育树; B: SpXTHs 的基因结构;黄色表示蛋白质编码序列(CDS);蓝色表示 基因上游/下游序列;黑色线条表示内含子;C:利用 MEME 工具预测的 SpXTHs 氨基酸序列中的基序。

图 2 红皮柳 SpXTHs 的系统发育树、基因结构及基序 Figure 2 Phylogenetic tree, geen structure and motif analysis of SpXTHs gene in Salix purpurea

Figure 3 The location distribution of *SpXTHs* gene on the chromosome of *Salix purpurea*

注:背景中灰色线条表示红皮柳基因组中的所有共线区块,红色线条表示复制的 SpXTHs 基因对;红皮柳染色体以 Chr01-19 标出。

图 4 SpXTHs 基因的片段复制示意 Figure 4 Schematic diagram of segmental duplication of SpXTHs gene

分别为15对和8对。

2.5 红皮柳 SpXTHs 基因启动子区域顺式作用元件分析

启动子区域中的顺式作用元件在基因的转录 表达调控中发挥重要作用,因此从 Phytozome 数据 库(www. Phytozome. net)收集红皮柳 *SpXTHs* 基 因家族成员起始密码子上游的2000 bp序列,鉴定 了其中的顺式作用元件。结果如图6,共鉴定出包 括光响应元件、激素响应元件、环境应激相关元 件、位点结合相关元件、启动子相关元件、发育 相关元件和其他元件共7种启动子顺式作用元件。 不同 *SpXTHs* 家族成员间的启动子区域顺式作用元 件的种类和数量有一定的差异。总的来看,其中 光响应元件(如 Box4、G-Box 和 BoxII等)和激 素响应元件(如 ABRE、AuxRR-core 和 TGA-element等)数量和种类最多。

2.6 红皮柳 SpXTHs 基因盐胁迫处理的表达模式 分析

*SpXTH1、SpXTH5、SpXTH6、SpXTH12、SpXTH15、 SpXTH20*和 *SpXTH29*在根部高表达。其中 *SpXTH1、 SpXTH12*和 *SpXTH20*在使用 3% NaCl 处理 2 h 后表 达量下调,在处理 12 h 后表达量有所上升; *SpXTH15*在使用 3% NaCl 处理后表达量下调。

3 结论与讨论

木葡聚糖内转葡糖基酶/水解酶是一类木葡聚 糖修饰酶,在木葡聚糖的交联和重构中发挥重要 作用。在本研究中,我们一共鉴定出 31 个红皮柳 *SpXTHs* 基因,对这 31 个蛋白进行理化性质分析可 知,该蛋白家族成员长度及分子量有较大差异, *SpXTHs* 蛋白长度为 241~374 个氨基酸,分子量约 为 27~42 kDa,等电点为 4.90~9.51,等电点均为

注: 灰色线条代表红皮柳和其他植物基因组中的共线区块; 红色线条代表共线的 XTHs 基因对; 橙色或绿色的粗线条代表 染色体, 上部或下部标有染色体编号。

图 5 红皮柳与拟南芥、甘蓝和水稻 XTHs 的比较同线图

Figure 5 Comparative syntenic maps of XTHs among Salix purpurea, Arabidopsis thaliana, Brassica oleracea var. capitata, and Oryza sativa

图 6 红皮柳 SpXTHs 基因家族启动子区域顺式作用元件 Figure 6 Cis acting elements in the promoter region of SpXTHs gene family in Salix purpurea

图 7 红皮柳根部 SpXTHs 基因家族在盐胁迫下的表达 Figure 7 The expression of SpXTHs gene family in Salix purpurea under salt stress

酸性。

进化分析表明 SpXTHs 共有 4 个进化分支(图 1)。通常,基因家族通过串联重复和片段重复而 扩展。根据全基因组分析结果,SpXTHs 基因经历 了全基因组复制事件和片段重复事件(图 4)。红 皮柳与拟南芥、甘蓝和水稻的比较同线图表明, 红皮柳与拟南芥、甘蓝和水稻的比较同线图表明, 红皮柳与拟南芥、甘蓝和水稻 XTHs 基因均具有同 线关系(图 5),由此说明,这些基因在进化过程 中具有高度保守性。

通过对 SpXTHs 基因启动子区域进行顺式作用 元件预测, 共鉴定出 7 种顺式作用元件 (图 6), 其中包括光响应元件、激素响应元件、环境应激 相关元件、位点结合相关元件、启动子相关元件、 发育相关元件和其他元件。其中,光响应元件、 发育相关元件、激素响应元件和环境胁迫相关元 件与植物生长调节密切相关。SpXTHs 基因启动子 区域含有的光响应元件包括 GT1-motif、TCT-motif 和 Box4 等共 25 种, 光响应元件是植物对外部 环境刺激作出反应的一个通用调节元件,例如 Box4 含有一个高度保守的核心序列 ATTAAT, 广 泛存在于光控基因和其他环境因子调控基因的启 动子中,可以对外部环境刺激做出反应。激素响 应元件包括 ABRE、AuxRR-core 和 CGTCA-motif 等共11种,它们与赤霉素、茉莉酸甲酯、玉米素 等的植物激素反应有关。此外, SpXTHs 基因启动 子区域还具有与环境胁迫相关的元件,如ARE, 该元件具有高度保守的核心序列AAACCA,对植物的无氧诱导至关重要。在3%NaCl处理后,红皮 柳根部 *SpXTH1、SpXTH5、SpXTH6、SpXTH12、 SpXTH15、SpXTH20*和 *SpXTH29*高表达,表明其可能在红皮柳根系抵抗盐胁迫过程中起作用。

本研究鉴定了红皮柳 SpXTHs 基因家族成员, 并进行了生物信息学分析,希望对红皮柳 SpXTHs 基因后续研究提供基础参考。

参考文献

- [1] PERRIELLO G. The composition and structure of plant primary cell walls[J]. Plant Cell Wall,2003,1:1-54.
- [2] MONTSERRAT SALADIÉ, ROSE J K C, COSGROVE D
 J, et al. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action
 [J]. Plant Journal for Cell and Molecular Biology, 2010, 47(2):282-295.
- [3] BUCKERIDGE M S, SANTOS H P D, MARCO AURÉLIO S TINÉ. Mobilisation of storage cell wall polysaccharides in seeds[J]. Plant Physiol Biochem, 2000, 38 (1-2):141-156.
- [4] CANTAREL B L, COUTINHO P M, CORINNE R, et al. The Carbohydrate-Active EnZymes database(CAZy): an expert resource for Glycogenomics[J]. Nucleic acids research, 2009, 37(1):233-238.
- [5] NISHITANI K, TOMINAGA R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule [J]. Journal of Biological Chemistry, 1992, 267(29):21058-21064.
- [6] EKLF J M, BRUMER H. The XTH gene family: an update on enzyme structure, function, and phylogeny in xy-loglucan remodeling[J]. Plant physiology, 2010, 153(2): 456-466.
- [7] BAUMANN M J, EKLOF J M, MICHEL G, et al. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases:biological implications for cell wall Metabolism [J]. The Plant Cell, 2007,19(6):1947-1963.
- [8] COSGROVE, DANIEL J. Growth of the plant cell wall
 [J]. Nature Reviews Molecular Cell Biology, 2005, 6 (11):850-861.
- [9] OSATO Y, YOKOYAMA R, NISHITANI K. A principal role for AtXTH18 in *Arabidopsis thaliana* root growth: a functional analysis using RNAi plants[J]. Journal of Plant Research, 2006, 119(2):153–162.

- [10] WU Y, JEONG B R, FRY S C, et al. Change in XET activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential [J]. Planta, 2005, 220(4):593-601.
- [11] MATSUI A, YOKOYAMA R, SEKI M, et al. AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements [J]. Plant Journal, 2005, 42(4):525-534.
- [12] HARADA T, TORII Y, MORITA S, et al. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening [J]. Journal of Experimental Botany, 2011, 62 (2):815-823.
- [13] SINGH A P, TRIPATHI S K, NATH P, et al. Petal abscission in rose is associated with the differential expression of two ethylene-responsive xyloglucan endotransglucosylase/hydrolase genes, RbXTH1 and RbXTH2
 [J]. Journal of Experimental Botany, 2011, 62 (14): 5091-5103.
- [14] NISHIKUBO, TAKAHASHI, ROOS, et al. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen [J]. Plant physiology, 2011, 155(1):399-413.
- [15] MIEDES E, LORENCES E P. Xyloglucan endotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening[J]. Journal of Plant Physiology, 2009, 166 (5):489-498.
- [16] JAN A. Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice[J]. Plant Physiology, 2004, 136(3):3670-3681.
- [17] RYUSUKE Y, KAZUHIKO N. A Comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of *Arabidopsis* [J]. Plant & Cell Physiology, 2001,42(10):1025-1033.
- [18] JINMING ZHU, SOPHIE ALVAREZ, ELLEN L. MARSH, et al. Cell wall proteome in the maize primary root elongation zone. ii. region-specific changes in water soluble and lightly ionically bound proteins under water deficit[J]. Plant Physiology, 2007, 145(4):1533-1548.
- [19] DONG J, JIANG Y, CHEN R, et al. Isolation of a novel xyloglucan endotransglucosylase (OsXET9) gene from rice and analysis of the response of this gene to abiotic stresses[J]. African Journal of Biotechnology, 2011, 10 (76):17424-17434.

- [20] 隋德宗,王保松,施士争,等. 灌木柳无性系苗期耐盐 性指标的筛选和综合评价[J]. 西北林学院学报, 2011,26(1):61-64.
- [21] GOODSTEIN D M, SHENGQIANG S, RUSSELL H, et al. Phytozome: a comparative platform for green plant genomics [J]. Nucleic Acids Research, 2012, 40 (1): 1178-1186.
- [22] PAYSAN-LAFOSSE T, BLUM M, CHUGURANSKY S, et al. InterPro in 2022 [J]. Nucleic Acids Research, 2023,51(1):418-427.
- [23] POTTER S C, LUCIANI AURÉLIEN, EDDY S R, et al. HMMER web server: 2018 update [J]. Nucleic Acids Research, 2018, 46(1): 200–204.
- [24] GASTEIGER E. Protein identification and analysis tools on the ExPASy server [J]. Methods in Molecular Biology, 1999, 112:531-552.
- [25] PAUL H, KEUN-JOON P, TAKESHI O, et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Research, 2007, 35:585-587.
- [26] HU B, JIN J, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server [J]. Bioinformatics, 2015,31(8):1296-1297.
- [27] BAILEY T L, MIKAEL B, BUSKE FA, et al. MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37:202-208.
- [28] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2015,33:1870-1874.
- [29] 叶佩琪,林晓慧,龙永彬,等.湿加松 TIFY 基因家族的 鉴定,分类与分析[J]. 林业与环境科学,2024,40(2): 1-10.
- [30] OLIVIER G, MIKE S. Neighbor-Joining Revealed [J].
 Molecular Biology and Evolution, 2006, 23 (11): 1997-2000.
- [31] CHEN C, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
- [32] LESCOT M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Research, 2002, 30(1):325-327.
- [33] SUI D, WANG B. Transcriptome analysis reveals complex defensive mechanisms in salt-tolerant and salt-sensitive shrub willow genotypes under salinity stress [J]. International Journal of Genomics, 2020, 4:1–10.